Skip to contents

A list of time series designed for anomaly detection tasks.

  • simple: simple synthetic series with isolated anomalies.

  • contextual: contextual anomalies relative to local behavior.

  • trend: synthetic series with trend and anomalies.

  • multiple: multiple anomalies.

  • sequence: repeated anomalous sequences.

  • tt: train-test split synthetic series.

  • tt_warped: warped train-test synthetic series.

#'

Usage

data(examples_anomalies)

Format

A list of time series for anomaly detection.

References

Harbinger package

Ogasawara, E., Salles, R., Porto, F., Pacitti, E. Event Detection in Time Series. 1st ed. Cham: Springer Nature Switzerland, 2025. doi:10.1007/978-3-031-75941-3

Examples

data(examples_anomalies)
# Select a simple anomaly series
serie <- examples_anomalies$simple
head(serie)
#>       serie event
#> 1 1.0000000 FALSE
#> 2 0.9689124 FALSE
#> 3 0.8775826 FALSE
#> 4 0.7316889 FALSE
#> 5 0.5403023 FALSE
#> 6 0.3153224 FALSE