Anomaly detector using autoencoder
Usage
han_autoencoder(input_size, encode_size)
Arguments
- input_size
Establish the input size for the autoencoder anomaly detector. It is the size of the output also.
- encode_size
The encode size for the autoencoder.
Value
han_autoencoder object
histogram based method to detect anomalies in time series. Bins with smaller amount of observations are considered anomalies. Values below first bin or above last bin are also considered anomalies.>.
Examples
# setting up time series regression model
#Use the same example of hanr_fbiad changing the constructor to:
model <- han_autoencoder(3,1)