Anomaly detector using FBIAD
Value
hanr_fbiad object Forward and Backward Inertial Anomaly Detector (FBIAD) detects anomalies in time series. Anomalies are observations that differ from both forward and backward time series inertia doi:10.1109/IJCNN55064.2022.9892088.
References
Lima, J., Salles, R., Porto, F., Coutinho, R., Alpis, P., Escobar, L., Pacitti, E., Ogasawara, E. Forward and Backward Inertial Anomaly Detector: A Novel Time Series Event Detection Method. Proceedings of the International Joint Conference on Neural Networks, 2022. doi:10.1109/IJCNN55064.2022.9892088
Examples
library(daltoolbox)
# Load anomaly example data
data(examples_anomalies)
# Use a simple example
dataset <- examples_anomalies$simple
head(dataset)
#> serie event
#> 1 1.0000000 FALSE
#> 2 0.9689124 FALSE
#> 3 0.8775826 FALSE
#> 4 0.7316889 FALSE
#> 5 0.5403023 FALSE
#> 6 0.3153224 FALSE
# Configure FBIAD detector
model <- hanr_fbiad()
# Fit the model
model <- fit(model, dataset$serie)
# Run detection
detection <- detect(model, dataset$serie)
# Show detected anomalies
print(detection[(detection$event),])
#> idx event type
#> 50 50 TRUE anomaly