Skip to contents

Anomaly detection using FFT The FFT model adjusts to the time series. Observations distant from the model are labeled as anomalies. It wraps the FFT model presented in the stats library.

Usage

hanr_fft()

Value

hanr_fft object

Examples

library(daltoolbox)

#loading the example database
data(examples_anomalies)

#Using simple example
dataset <- examples_anomalies$simple
head(dataset)
#>       serie event
#> 1 1.0000000 FALSE
#> 2 0.9689124 FALSE
#> 3 0.8775826 FALSE
#> 4 0.7316889 FALSE
#> 5 0.5403023 FALSE
#> 6 0.3153224 FALSE

# setting up time series fft detector
model <- hanr_fft()

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])
#>     idx event    type
#> 1     1  TRUE anomaly
#> 50   50  TRUE anomaly
#> 101 101  TRUE anomaly