Anomaly detection using daltoolbox regression The regression model adjusts to the time series. Observations distant from the model are labeled as anomalies. A set of preconfigured regression methods are described in https://cefet-rj-dal.github.io/daltoolbox/. They include: ts_elm, ts_conv1d, ts_lstm, ts_mlp, ts_rf, ts_svm
Examples
library(daltoolbox)
#loading the example database
data(examples_anomalies)
#Using simple example
dataset <- examples_anomalies$simple
head(dataset)
#> serie event
#> 1 1.0000000 FALSE
#> 2 0.9689124 FALSE
#> 3 0.8775826 FALSE
#> 4 0.7316889 FALSE
#> 5 0.5403023 FALSE
#> 6 0.3153224 FALSE
# setting up time series regression model
model <- hanr_ml(ts_elm(ts_norm_gminmax(), input_size=4, nhid=3, actfun="purelin"))
# fitting the model
model <- fit(model, dataset$serie)
detection <- detect(model, dataset$serie)
#> Warning: number of items to replace is not a multiple of replacement length
# filtering detected events
print(detection[(detection$event),])
#> idx event type
#> NA NA NA <NA>
#> NA.1 NA NA <NA>
#> NA.2 NA NA <NA>
#> NA.3 NA NA <NA>
#> NA.4 NA NA <NA>
#> NA.5 NA NA <NA>
#> NA.6 NA NA <NA>
#> NA.7 NA NA <NA>
#> NA.8 NA NA <NA>
#> NA.9 NA NA <NA>
#> NA.10 NA NA <NA>
#> NA.11 NA NA <NA>
#> NA.12 NA NA <NA>
#> NA.13 NA NA <NA>
#> 52 52 TRUE anomaly