Skip to contents

Anomaly and change point detection using RED The RED model adjusts to the time series. Observations distant from the model are labeled as anomalies. It wraps the EMD model presented in the hht library.

Usage

hanr_red(sw_size = 30, noise = 0.001, trials = 5)

Arguments

sw_size

sliding window size (default 30)

noise

noise

trials

trials

Value

hanr_red object

Examples

library(daltoolbox)
library(zoo)
#> 
#> Attaching package: ‘zoo’
#> The following objects are masked from ‘package:base’:
#> 
#>     as.Date, as.Date.numeric

#loading the example database
data(examples_anomalies)

#Using simple example
dataset <- examples_anomalies$simple
head(dataset)
#>       serie event
#> 1 1.0000000 FALSE
#> 2 0.9689124 FALSE
#> 3 0.8775826 FALSE
#> 4 0.7316889 FALSE
#> 5 0.5403023 FALSE
#> 6 0.3153224 FALSE

# setting up time series emd detector
model <- hanr_red()

# fitting the model
model <- fit(model, dataset$serie)

detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])
#>    idx event    type
#> 50  50  TRUE anomaly