Anomaly and change point detection using RTAD The RTAD model adjusts to the time series. Observations distant from the model are labeled as anomalies. It wraps the EMD model presented in the hht library.
References
Ogasawara, E., Salles, R., Porto, F., Pacitti, E. Event Detection in Time Series. 1st ed. Cham: Springer Nature Switzerland, 2025. doi:10.1007/978-3-031-75941-3
Examples
library(daltoolbox)
library(zoo)
#>
#> Attaching package: ‘zoo’
#> The following objects are masked from ‘package:base’:
#>
#> as.Date, as.Date.numeric
# Load anomaly example data
data(examples_anomalies)
# Use a simple example
dataset <- examples_anomalies$simple
head(dataset)
#> serie event
#> 1 1.0000000 FALSE
#> 2 0.9689124 FALSE
#> 3 0.8775826 FALSE
#> 4 0.7316889 FALSE
#> 5 0.5403023 FALSE
#> 6 0.3153224 FALSE
# Configure RTAD detector
model <- hanr_rtad()
# Fit the model
model <- fit(model, dataset$serie)
# Run detection
detection <- detect(model, dataset$serie)
# Show detected events
print(detection[(detection$event),])
#> idx event type
#> 50 50 TRUE anomaly