Multiresolution decomposition via wavelets; anomalies are flagged where aggregated wavelet detail coefficients indicate unusual energy.
Details
The series is decomposed with MODWT and detail bands are aggregated to
compute a magnitude signal that is thresholded using harutils().
References
Mallat S (1989). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):674–693.
Examples
library(daltoolbox)
# Load anomaly example data
data(examples_anomalies)
# Use a simple example
dataset <- examples_anomalies$simple
head(dataset)
#> serie event
#> 1 1.0000000 FALSE
#> 2 0.9689124 FALSE
#> 3 0.8775826 FALSE
#> 4 0.7316889 FALSE
#> 5 0.5403023 FALSE
#> 6 0.3153224 FALSE
# Configure wavelet-based anomaly detector
model <- hanr_wavelet()
# Fit the model
model <- fit(model, dataset$serie)
# Run detection
detection <- detect(model, dataset$serie)
# Show detected anomalies
print(detection[(detection$event),])
#> idx event type
#> 50 50 TRUE anomaly