Majority-vote ensemble across multiple Harbinger detectors with optional temporal fuzzification to combine nearby detections.
References
Ogasawara, E., Salles, R., Porto, F., Pacitti, E. Event Detection in Time Series. 1st ed. Cham: Springer Nature Switzerland, 2025. doi:10.1007/978-3-031-75941-3
Examples
library(daltoolbox)
# Load anomaly example data
data(examples_anomalies)
# Use a simple example
dataset <- examples_anomalies$simple
head(dataset)
#>       serie event
#> 1 1.0000000 FALSE
#> 2 0.9689124 FALSE
#> 3 0.8775826 FALSE
#> 4 0.7316889 FALSE
#> 5 0.5403023 FALSE
#> 6 0.3153224 FALSE
# Configure an ensemble of detectors
model <- har_ensemble(hanr_arima(), hanr_arima(), hanr_arima())
# model <- har_ensemble(hanr_fbiad(), hanr_arima(), hanr_emd())
# Fit all ensemble members
model <- fit(model, dataset$serie)
# Run ensemble detection
detection <- detect(model, dataset$serie)
# Show detected events
print(detection[(detection$event),])
#>    idx event    type
#> 50  50  TRUE anomaly