Change-point detection method focusing on identifying at most one change in
mean and/or variance. This is a wrapper around the AMOC implementation from
the changepoint package.
Details
AMOC detects a single most significant change point under a cost function optimized for a univariate series. It is useful when at most one structural break is expected.
References
Hinkley DV (1970). Inference about the change-point in a sequence of random variables. Biometrika, 57(1):1–17. doi:10.1093/biomet/57.1.1
Killick R, Fearnhead P, Eckley IA (2012). Optimal detection of changepoints with a linear computational cost. JASA, 107(500):1590–1598.
Examples
library(daltoolbox)
# Load change-point example data
data(examples_changepoints)
# Use a simple example
dataset <- examples_changepoints$simple
head(dataset)
#> serie event
#> 1 0.00 FALSE
#> 2 0.25 FALSE
#> 3 0.50 FALSE
#> 4 0.75 FALSE
#> 5 1.00 FALSE
#> 6 1.25 FALSE
# Configure the AMOC detector
model <- hcp_amoc()
# Fit the detector (no-op for AMOC)
model <- fit(model, dataset$serie)
# Run detection
detection <- detect(model, dataset$serie)
# Show detected change point(s)
print(detection[(detection$event),])
#> idx event type
#> 84 84 TRUE changepoint