Skip to contents

Change-point detection method that focus on identify change points in mean/variance doi:10.2307/2529204. It wraps the BinSeg implementation available in the changepoint library.

Usage

hcp_binseg(Q = 2)

Arguments

Q

The maximum number of change-points to search for using the BinSeg method

Value

hcp_binseg object

Examples

library(daltoolbox)

#loading the example database
data(examples_changepoints)

#Using simple example
dataset <- examples_changepoints$simple
head(dataset)
#>   serie event
#> 1  0.00 FALSE
#> 2  0.25 FALSE
#> 3  0.50 FALSE
#> 4  0.75 FALSE
#> 5  1.00 FALSE
#> 6  1.25 FALSE

# setting up change point method
model <- hcp_binseg()

# fitting the model
model <- fit(model, dataset$serie)

# execute the detection method
detection <- detect(model, dataset$serie)
#> Warning: The number of changepoints identified is Q, it is advised to increase Q to make sure changepoints have not been missed.

# filtering detected events
print(detection[(detection$event),])
#>    idx event        type
#> 19  19  TRUE changepoint
#> 85  85  TRUE changepoint