Change-point detection by modeling residual deviations with ARIMA and applying
a second-stage smoothing and thresholding, inspired by ChangeFinder
doi:10.1109/TKDE.2006.1599387. Wraps ARIMA from the forecast package.
References
Takeuchi J, Yamanishi K (2006). A unifying framework for detecting outliers and change points from time series. IEEE Transactions on Knowledge and Data Engineering.
Examples
library(daltoolbox)
# Load change-point example data
data(examples_changepoints)
# Use a simple example
dataset <- examples_changepoints$simple
head(dataset)
#> serie event
#> 1 0.00 FALSE
#> 2 0.25 FALSE
#> 3 0.50 FALSE
#> 4 0.75 FALSE
#> 5 1.00 FALSE
#> 6 1.25 FALSE
# Configure ChangeFinder-ARIMA detector
model <- hcp_cf_arima()
# Fit the model
model <- fit(model, dataset$serie)
# Run detection
detection <- detect(model, dataset$serie)
# Show detected change points
print(detection[(detection$event),])
#> idx event type
#> 51 51 TRUE changepoint