Change-point detection by modeling residual deviations with linear regression and applying a second-stage smoothing and thresholding, inspired by ChangeFinder doi:10.1109/TKDE.2006.1599387.
Examples
library(daltoolbox)
# Load change-point example data
data(examples_changepoints)
# Use a simple example
dataset <- examples_changepoints$simple
head(dataset)
#> serie event
#> 1 0.00 FALSE
#> 2 0.25 FALSE
#> 3 0.50 FALSE
#> 4 0.75 FALSE
#> 5 1.00 FALSE
#> 6 1.25 FALSE
# Configure ChangeFinder-LR detector
model <- hcp_cf_lr()
# Fit the model
model <- fit(model, dataset$serie)
# Run detection
detection <- detect(model, dataset$serie)
# Show detected change points
print(detection[(detection$event),])
#> [1] idx event type
#> <0 rows> (or 0-length row.names)