Change-point detection is related to event/trend change detection. Change Finder GARCH detects change points based on deviations relative to linear regression model doi:10.1109/TKDE.2006.1599387. It wraps the GARCH model presented in the rugarch library.
References
Ogasawara, E., Salles, R., Porto, F., Pacitti, E. Event Detection in Time Series. 1st ed. Cham: Springer Nature Switzerland, 2025. doi:10.1007/978-3-031-75941-3
Examples
library(daltoolbox)
# Load change-point example data
data(examples_changepoints)
# Use a volatility example
dataset <- examples_changepoints$volatility
head(dataset)
#> serie event
#> 1 1.61424200 FALSE
#> 2 1.19696424 FALSE
#> 3 -0.02275846 FALSE
#> 4 -2.22607912 FALSE
#> 5 0.01189136 FALSE
#> 6 -0.03898793 FALSE
# Configure ChangeFinder-GARCH detector
model <- hcp_garch()
# Fit the model
model <- fit(model, dataset$serie)
# Run detection
detection <- detect(model, dataset$serie)
# Show detected change points
print(detection[(detection$event),])
#> idx event type
#> 196 196 TRUE changepoint