Skip to contents

Change-point detection method that focus on identifying multiple exact change points in mean/variance doi:10.1080/01621459.2012.737745. It wraps the BinSeg implementation available in the changepoint library.

Usage

hcp_pelt()

Value

hcp_pelt object

Examples

library(daltoolbox)

#loading the example database
data(examples_changepoints)

#Using simple example
dataset <- examples_changepoints$simple
head(dataset)
#>   serie event
#> 1  0.00 FALSE
#> 2  0.25 FALSE
#> 3  0.50 FALSE
#> 4  0.75 FALSE
#> 5  1.00 FALSE
#> 6  1.25 FALSE

# setting up change point method
model <- hcp_pelt()

# fitting the model
model <- fit(model, dataset$serie)

# execute the detection method
detection <- detect(model, dataset$serie)

# filtering detected events
print(detection[(detection$event),])
#>    idx event        type
#> 9    9  TRUE changepoint
#> 19  19  TRUE changepoint
#> 29  29  TRUE changepoint
#> 39  39  TRUE changepoint
#> 60  60  TRUE changepoint
#> 71  71  TRUE changepoint
#> 81  81  TRUE changepoint
#> 91  91  TRUE changepoint