Anomaly and change point detection using RED The RED model adjusts to the time series. Observations distant from the model are labeled as anomalies. It wraps the EMD model presented in the hht library.
Usage
hcp_red(
sw_size = 30,
noise = 0.001,
trials = 5,
red_cp = TRUE,
volatility_cp = TRUE,
trend_cp = TRUE
)
Examples
library(daltoolbox)
#loading the example database
data(examples_changepoints)
#Using simple example
dataset <- examples_changepoints$simple
head(dataset)
#> serie event
#> 1 0.00 FALSE
#> 2 0.25 FALSE
#> 3 0.50 FALSE
#> 4 0.75 FALSE
#> 5 1.00 FALSE
#> 6 1.25 FALSE
# setting up change point method
model <- hcp_red()
# fitting the model
model <- fit(model, dataset$serie)
# execute the detection method
detection <- detect(model, dataset$serie)
# filtering detected events
print(detection[(detection$event),])
#> idx event type
#> 51 51 TRUE changepoint