Discovers repeated subsequences (motifs) using Matrix Profile methods as
implemented in the tsmp package doi:10.32614/RJ-2020-021.
References
Yeh CCM, et al. (2016). Matrix Profile I/II: All-pairs similarity joins and scalable time series motifs/discrod discovery. IEEE ICDM.
Tavenard R, et al. tsmp: The Matrix Profile in R. The R Journal (2020). doi:10.32614/RJ-2020-021
Examples
library(daltoolbox)
# Load motif example data
data(examples_motifs)
# Use a simple sequence example
dataset <- examples_motifs$simple
head(dataset)
#> serie event
#> 1 1.0000000 FALSE
#> 2 0.9939124 FALSE
#> 3 0.9275826 FALSE
#> 4 0.8066889 FALSE
#> 5 0.6403023 FALSE
#> 6 0.4403224 FALSE
# Configure motif discovery via Matrix Profile
model <- hmo_mp("stamp", 4, 3)
# Fit the model
model <- fit(model, dataset$serie)
# Run detection
detection <- detect(model, dataset$serie)
#> Finished in 0.02 secs
# Show detected motifs
print(detection[(detection$event),])
#> idx event type seq seqlen
#> 6 6 TRUE motif 3 4
#> 19 19 TRUE motif 2 4
#> 25 25 TRUE motif 1 4
#> 31 31 TRUE motif 3 4
#> 44 44 TRUE motif 2 4
#> 56 56 TRUE motif 3 4
#> 69 69 TRUE motif 2 4
#> 75 75 TRUE motif 1 4
#> 81 81 TRUE motif 3 4
#> 94 94 TRUE motif 2 4