Skip to contents

Evaluation of event detection using SoftED doi:10.48550/arXiv.2304.00439

Usage

har_eval_soft(sw_size = 15)

Arguments

sw_size

tolerance window size

Value

har_eval_soft object

Examples

library(daltoolbox)

#loading the example database
data(examples_anomalies)

#Using the simple
dataset <- examples_anomalies$simple
head(dataset)
#>       serie event
#> 1 1.0000000 FALSE
#> 2 0.9689124 FALSE
#> 3 0.8775826 FALSE
#> 4 0.7316889 FALSE
#> 5 0.5403023 FALSE
#> 6 0.3153224 FALSE

# setting up time change point using GARCH
model <- hcp_garch()

# fitting the model
model <- fit(model, dataset$serie)

# making detections
detection <- detect(model, dataset$serie)
#> Warning: number of items to replace is not a multiple of replacement length

# filtering detected events
print(detection[(detection$event),])
#>    idx event        type
#> 55  55  TRUE changepoint

# evaluating the detections
evaluation <- evaluate(har_eval_soft(), detection$event, dataset$event)
print(evaluation$confMatrix)
#>           event      
#> detection TRUE  FALSE
#> TRUE      0.67  0.33 
#> FALSE     0.33  99.67

# ploting the results
grf <- har_plot(model, dataset$serie, detection, dataset$event)
plot(grf)